VEL TECH MULTITECH DR.RANGARAJAN DR.SAKUNTHALA ENGINEERING COLLEGE DEPARTMENT OF SCIENCE AND HUMANITIES QUESTION BANK

DEGREE

: BE/B.TECH

SUBJECT

: ENGINEERING CHEMISTRY

SEMESTER: I

SUBJECT CODE: 191CH101

YEAR : I

UNIT I -CHEMICAL BONDING PART A (1 MARKS)

1	Which of the following is known as electrovalent bond? a) Ionic bond b) Metallic bond c)Covalent bond d)None of the above	CO1.1	K1
2	What type of bond completely transfers the electrons during bond formation? a) Covalent bond b)Ionic bond c)Metallic bond d)Hydrogen bond	CO1.1	K1
3	Covalent bond forms between non-metallic elements of	CO1.1	К1
4	The ionic bond is formed by the of attraction. a) dispersion force b) magnetic force c) electrostatic force d) electric force	CO1.1	K1
5	Which of the following solid does not contain a covalent bond? a) Copper b) Ice c) Diamond d) Graphite	CO1.1	K1
6	The property of shared pair of electrons closer tooneatomthantheotherinacovalentbondisknownas a) bondorder b) bondpolarity c) bondinteraction d) bondproperty	CO1.2	K1

7	When the electro-negativity between atoms is greater than 2.0, then the bond formation would be a)covalent bond b) hydrogen bond c) ionic bond d) metallic bond	CO1.2	K2
8	The measure of the degree of polarity is	CO1.2	K1
9	The covalent compounds are non-polar in nature and are insoluble in	CO1.2	K1
10	When there is no difference in the electronegativity, then the bond is	CO1.2	K2
11	Intermolecular force is also known as	CO1.4	K1
	Ethanol has high boiling point than diethyl ether due to	CO1.4	K2
13	Alcohol is soluble in water due to	CO1.4	K2
14	Which of the following properties are affected by chemical bonds? a) solubility and melting point b) melting point and boiling point c) stability and hardness d) allof the above	CO1.5	K2
15	Molecularorbitalsarefilledaccordingto	CO1.6	K1

16	Strengthofametallicbondvariesaccordingto the	CO1.6	K1
	a) twice b) thrice c) equal d) noneoftheabove	CO1.6	К1
18	Bond order is used to calculate the a) strength of the bond b) length of the bond c) nature of the bond d) number of bonds	CO1.6	К1
19	b) 2&3 c) 3&2 d) 1&2	CO1.6	K1
20	b) $(\pi 2py) > (\sigma 2pz) > (\pi^* 2px) \sim (\pi^* 2py)$ c) $(\pi 2py) < (\sigma 2pz) > (\pi^* 2px) \approx (\pi^* 2py)$ d) $(\pi 2py) > (\sigma 2pz) < (\pi^* 2px) \approx (\pi^* 2py)$	CO1.6	K1
21	Select the exact ionization processes, in which the magnetic behavior has changed from paramagnetic to diamagnetic? a) $NO \rightarrow NO^+$ b) $O_2 \rightarrow O_2^+$ c) $N_2 \rightarrow N_2^+$ d) $C_2 \rightarrow C_2^+$	CO1.6	кз
22	Identify the following ionic species which have equal bond order? i) O_2^- ii) CN^- iii) NO^+ d) O_2^+ a) (i) & (ii) b) (i) & (iv) c) (iii) & (iv) d) (ii) & (iii)	CO1.6	К3
23	Make use of MO theory and find which of the following species has the shortest bond length? a) O_2^- b) O_2^{2-} c) O_2^{2+} d) O_2^+	CO1.6	(3

		7	
24	The gap between the valence band and conduction band is a) valence gap b) forbidden gap c) conduction gap d) noneof these	CO1	.7 K1
25	Arrange the following materials, in the increasing order of width of their bond length. a) Semiconductors>Conductor>Insulator b) Conductor <semiconductor<insulator c)="" conductor="">Semiconductor>Insulator d) Insulator>Conductor>Semiconductor</semiconductor<insulator>	CO1.	7 K2
26	The addition of trivalent impurity to an intrinsic semiconductor forms a) n-type Semiconductor b) p-type Semiconductor c) extrinsic Semiconductor	CO1.	7 K1
27	d) trivalent Semiconductor From the following atoms, which one is used as a dopant for n-type semiconductor? a) Al b) Ge c) B d) As	CO1.7	K1
28	The energy band gap is maximum in a) metals b) superconductors c) insulators d) semiconductors	CO1.7	K1
29	The chalcogenide glasses behave like a a) conductor b) semiconductor c) insulator	CO1.8	К1
30	The chalcogens are the elements ofgroup in the periodic table. a) 15 th b) 17 th	CO1.8	K1
31	Missing of equal number of cations and anions from an ionic crystal leads to	CO1.9	К1

	Which of these is a Frankel defect?		
32	i) iii) iii) iv) a) i only b) ii only c) iii only d) iv only	CO1.9	K2
33	The Iron oxide (FeO) is an example for a) SchottkyDefect b) FrenkelDefect c) MetalExcessDefect d) Metal Deficiency Defect	CO1.9	K1
	DADT D (AM. 1)		

PART-B (4 Marks)

1	Illustrate the formation of covalent and ionic bonds with suitable examples.	0011	1/0
2	Demonstrate the consequences of hydrogen bonding.	CO1.1	K2
3	Distinguish the characteristic City City City City City City City City	CO1.3	K2
3	Distinguish the characteristics of intermolecular and intramolecular hydrogen bonding with suitable examples.	CO1.4	K4
4	Apply free electron theory and explain the formation of metallic bonding.	CO1.6	V2
5	Explain the electrical conductivity of n-type and p-type semiconductors.		K3
		CO1.7	K2
6	Compare the properties of intrinsic and extrinsic semiconductors with an example.	CO1.7	K2
7	Summarize the features of band theory.		
8	Identify the characteristics of Chalanger	CO1.7	K2
	Identify the characteristics of Chalcogen semiconductors.	CO1.8	К3
9	Classify the different types of defects in ionic crystals.		
10	Interpret the nature of Schottky and Frenkel defects with neat sketch.	CO1.9	K2
		CO1.9	K2

PART-C (12 Marks)

1	List the types of chemical bonds and illustrate the formation of chemical bonding with suitable examples.	CO1.1	K4
2	Justify the following statements. i) H ₂ O is a liquid at room temperature while H ₂ S is a gas. ii) Density of ice is less than that of water. iii) Melting points of ionic compounds are higher than those of covalent bonds. iv) Aqueous solution of NaCl is a good conductor of electricity than NaCl crystals. Explain the importance of weak interactions.	CO1.3	K2
4	On account of molecular orbital treatment, identify whether the molecule of oxygen is diamagnetic or paramagnetic in nature.	CO1.4 CO1.6	K2 K3
5	Apply MO theory and identify the magnetic behaviour of nitrogen, oxygen and hydrogen.	CO1.6	K3
7	Compare the features of insulators, conductors and semiconductors based on band theory. Compare the salient features of band theory and MO theory.	CO1.7	K2
8	Explain the types of semiconductors with suitable examples.	CO1.7	K2 K2